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ABSTRACT
General purpose GPUs are a new and powerful hardware de-
vice with a number of applications in the realm of relational
databases. We describe a database framework designed to
allow both CPU and GPU execution of queries. Through use
of our novel data structure design and method of using GPU-
mapped memory with efficient caching, we demonstrate that
GPU query acceleration is possible for data sets much larger
than the size of GPU memory. We also argue that the use of
an opcode model of query execution combined with a sim-
ple virtual machine provides capabilities that are impossible
with the parallel primitives used for most GPU database re-
search. By implementing a single database framework that
is efficient for both the CPU and GPU, we are able to make a
fair comparison of performance for a filter operation and ob-
serve speedup on the GPU. This work is intended to provide
a clearer picture of handling very abstract data operations
efficiently on heterogeneous systems in anticipation of fur-
ther application of GPU hardware in the relational database
domain. Speedups of 4x and 8x over multicore CPU execu-
tion are observed for arbitrary data sizes and GPU-cacheable
data sizes, respectively.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming;
H.2.4 [Database Management]: Parallel Databases

Keywords
GPGPU, CUDA, Databases, SQL

1. INTRODUCTION
Originally intended purely for graphics acceleration, graph-

ics processing units, or GPUs, are now used for a vast array
of interesting and challenging computational tasks. While
the CPU is built to execute perhaps 4 or 8 threads simultane-
ously, GPUs are constructed from a fundamentally different
perspective. By sacrificing complexity and complete thread
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independence, modern GPUs efficiently manage thousands
of threads simultanously and allow the programmer to pro-
cess data at throughputs over 100 gigabytes per second.

Increasingly, programmers are applying this power to prob-
lems outside the realm of graphics with general purpose
graphics processing units, or GPGPUs, such as the NVIDIA
Tesla hardware line. With no video output, these cards are
intended solely for general computation. GPGPUs can ac-
celerate certain applications by an order of magnitude [6],
despite the fact that data must be transferred between main
memory and GPU memory before processing occurs. Prob-
lems such as matrix multiplication, which has a high degree
of parallelism, are ideal for GPU acceleration.

From a software perspective, GPU development is a low-
level and difficult task, particularly for programmers inexpe-
rienced in handling high levels of parallelism. Development
on NVIDIA GPUs is done in CUDA, an extension of the C
programming language, and transformed with a proprietary
compiler to PTX, an assembly language used with modern
NVIDIA hardware. CUDA uses the stream programming
paradigm; It executes a single kernel function simultane-
ously a massive number of times, with each call becoming a
thread and handling an assigned chunk of data. Rather than
a classic SIMD architecture, NVIDIA refers to its model of
parallelism as single instruction, multiple thread, or SIMT.
On the Tesla C2070 there are 448 simple cores organized into
groups called streaming multiprocessors. When the kernel is
executed the threads of execution are grouped into thread-
blocks and mapped to a streaming multiprocessor. Thread-
blocks are most efficient when an instruction is executed
simultaneously across all member threads, but threads can
diverge based on the data they process.

NVIDIA GPUs utilize a number of unique memory spaces.
Global memory is the largest and has longest latency, sized
at 6GB on the Tesla C2070. Register memory is associ-
ated with a thread/core and has the lowest latency, but is
relatively small, so Local memory is a space used to over-
flow memory scoped at the thread level into global memory.
Additionally, each streaming multiprocessor contains shared
memory, a pool that can be written and accessed by any
thread within the threadblock, enabling extremely efficient
cooperation between threads. A drawback of GPU-managed
memory is the fact that its global memory exists separately
from that of the machines main memory, necessitating ex-
pensive memory transfers before this data can be processed
on the GPU.

Perhaps the most powerful feature of the GPU architec-
ture is memory coalescing. Coalescing occurs when every



thread in a threadblock accesses GPU global memory in a
simultaneous and aligned pattern. The GPU hardware com-
bines these accesses into a single memory fetch, concurrently
feeding each core with data. This feature makes it possible
to achieve memory throughput of over 100 GB/s on the Tesla
line.

Our research attempts to utilize this new and powerful
hardware to handle classic relational database management
system (RDMBS) problems. Though some research has
been conducted in this field, it focuses more on optimiz-
ing parallel data primitives rather than adapting RDBMSs
to the GPU. Very few commercial databases use GPU ac-
celeration in any respect, and no database exploits it to its
full potential, despite the recent interest in high perform-
ing ”NoSQL” databases, such as Cassandra, CouchDB, or
MongoDB. In some sense, data processing software has yet
to catch up with new and powerful GPGPU hardware [8].
The thesis underlying our work can be summarized simply:
converging cutting-edge GPGPU research with traditional
database technology advances both fields and produces im-
pressive results.

The most important factor in writing efficient GPGPU
applications is careful handling of data. The programmer’s
many options for moving data between GPU and main mem-
ory, in addition to the many memory spaces on the GPU
itself, creates a large space of implementation possibilities.
A certain data structure, for example, can prevent mem-
ory coalescing when moving data between GPU register and
global memory, drastically reducing performance. Thus, in-
telligent implementation of GPU database acceleration in-
volves rethinking of the database’s entire structure.

Through implementation of a simple experimental data-
base, this paper demonstrates solutions for a very general
data structure called the Tablet (Section 3), an efficient
mechanism for transferring this structure between the CPU
and GPU (Section 4), an overall implementation guide and
method of breaking computation into ’opcodes’ (Section 5),
and a discussion of why this method is superior to others
(Section 6). Our database is limited to a class of SQL filter
operations, for which we provide testing results, yet demon-
strates many important GPU database concepts. Though
many GPGPU research projects focus on execution per-
formance and ignore data transfer to and from the GPU,
our Tablet data structure and novel transfer mechanism are
designed specifically for efficient end-to-end performance.
Thus, the performance of our implementation proves that
GPUs can accelerate database operations on arbitrarily large
data sets.

We compare highly optimized GPU and multicore CPU
implementations with a focus on demonstrating the fastest
achievable query execution speeds on each under our data
and workload models. To our knowledge, this remains the
only published line of research that specifically examines
handling database tasks through an opcode model of ex-
ecution employed by most databases and easily accessible
through SQL, rather than in the context of data parallel
primitives such as map, scatter, or reduce. We believe
that our results provide important insight into practical im-
plementation of GPU-based databases that mimics the way
many classic CPU-based databases are written.

Though we believe the GPU techniques we describe to be
the most important results of this work, our testing results
indicate the power of our approach. Execution of queries

on the GPU shows speedups of at least an order of magni-
tude to single core CPU execution, and speedups of 4x and
8x for our mapped memory and cached memory implemen-
tations over multi-core CPU execution. These results are
achieved on a SQL filter operation compiled to an interme-
diate opcode language that can be executed on either our
CPU or GPU virtual machines, chosen by setting a simple
flag. Ultimately, programmers use GPGPU processing to
speed up their programs, and this class of database problem
sees significant acceleration on the GPU.

2. RELATED WORK
This research continues the work published as Accelerating

SQL Database Operations on a GPU with CUDA and Ac-
celerating SQL Database Operations on a GPU with CUDA:
Extended Results [1, 2]. These papers presented a project
that re-implemented a segment of the SQLite database to
enable certain queries to execute in parallel on the GPU
rather than serially on the CPU. SQLite tranforms a SQL
query into a program of opcodes executed with an internal
virtual machine. By re-implementing the virtual machine
as a CUDA kernel, certain SQL select queries, including
aggregations, could be run on the GPU. The imlementation
was tested with a battery of 13 queries run over 10 mil-
lion rows of unindexed numerical data. An average running
time speedup of 35 times was observed with GPU execu-
tion. Though this project’s implementation shares no code
with previous research, many ideas have been directly in-
herited and implemented as a standalone platform. In ad-
dition to this previous work, a handful of other researchers
have experimented with GPU database processing relevant
to databases.

The simplest method of GPU database access is through
stored procedures. Many databases allow programmers to
extend its functionality through user-defined functions or ex-
ternal procedures. These methods allow user-written code
to directly manipulate data controlled by the DBMS, but
do not make this extension transparent to the query-writer,
meaning this extension must be explicitly called; It is not
accessed during a vanilla database operation. One such ef-
fort extends an Oracle database to accelerate queries involv-
ing spatial operations, which have a high ratio of processing
to I/O [3]. The authors concluded that a GPU external
procedure could significantly accelerate this workload. An-
other article describes implementing a stored procedure in a
PostgreSQL database that uses a CUDA program to rapidly
generate random numbers, a common GPU-accelerated op-
eration [21]. This procedure is accessed directly through
SQL.

The majority of research into GPU acceleration of database
functionality has been through a set of fairly standard par-
allel primitives. These operations, such as sort, scan, and
filter are implemented as CUDA kernels and can be exe-
cuted in succession, producing results much like a relational
database. There is a direct correlation between many rela-
tional operations and this set of standard primitives; filter,
for instance, is a type of database selection.

Beginning with more general predicate evaluation and ag-
gregations [16], research has focused on finding the best
GPU optimizations in each area. Joins are a vital database
operations, and work has developed GPU-targeted nested-
loop, sort-merge, and hash joins, observing significant speed-
ups on GPU hardware [11, 19, 20, 31]. Research has also fo-



cused on the scatter and gather primitives [18, 19]. Other
work has examined GPU acceleration for parallel search op-
erations often performed within databases [23].

Sorting is another important area where GPUs have ex-
celled. The GPU’s unique architecture means that very spe-
cialized algorithms are required to achieve optimal execution
speeds. Most algorithms are based on the radix sort method,
often employing parallel scans or bitonic merges during the
sorting process [11, 12, 15, 19, 20]. The most recent work
in this area boasts sorting speeds of 482 million key-value
pairs per second [26, 27].

Database indices have also been implemented and accel-
erated on the GPU. Some implementations use CSS-Trees,
a type of cache-conscious index applicable to the GPU be-
cause it is stored as a flat array, enabling access through
simple arithmetic rather than through pointers [11, 19, 29].
Research published recently claims that a method called bin-
hash indexing is an even faster way to access indices on a
GPU [14]. Importantly, significant speedup has also been
shown for more traditional B+ Trees, demonstrating the
outperformance of the GPU in an important piece of the
modern database [13].

The scan operation, often called a parallel prefix-sum, sets
every element n in array B to the sum of elements 1..n in
array A. It is an important piece of many data processing
operations, such as sorting, and has been widely researched
and accelerated on GPUs. Implementations attempt to op-
timize the process by utilizing the GPU’s shared memory
and using novel parallel forms of aggregation for each cell of
the destination array [9, 19, 25].

The popularity of the MapReduce programming paradigm
paradigm has also spurred GPU development, adapting a fa-
miliar framework to the powerful GPU platform [7, 17, 24].
MapReduce frameworks such as Hadoop have been used to
replace traditional databases in certain applications, though
they are generally more applicable to workloads with un-
structured data. The inherent parallelism of this approach
is normally exploited in clouds of distributed machines, but
it proves a natural match for the GPU architecture. These
frameworks are much simpler than a full RDBMS, and thus
do not encounter many of the issues associated with devel-
oping a framework like ours.

Several research projects have developed a higher level
framework built upon the traditional parallel primitives that
manages overall query execution [19, 32]. These manage a
query plan as a directed graph of discrete operations, such
executing a primitive or moving data from main memory
to the GPU or vice versa, that in its entirety represents a
course of action for the query. This model has been some-
what inherited from the distributed computing world, where
it can be used to assign independent segments of the query
plan to separate machines to run in parallel. In the GPU
context, this framework separates out the memory transfers
and primitive executions, sometimes in multiple branches,
allowing a query optimizer to calculate the cost of transfer-
ring data to the GPU versus the benefit of the accelerated
primitive [30]. It also allows division of labor between the
CPU and GPU. In this paper we argue that the usual imple-
mentation of this pattern on the GPU, with a CUDA kernel
representing a node in the graph, is sub-optimal.

In September 2010 a German software company, empulse
GmbH, introduced ParStream, a database capable of ex-
ploiting GPU hardware. ParStream is a distributed column-

oriented database intended for exceptionally fast queries of
billions of records [10, 22]. Like many research designs,
ParStream’s query optimizer breaks the query into a di-
rected graph of segments, called query nodes, which it then
intelligently assigns both between separate machines and
on the heterogeneous level between the CPU and GPU.
ParStream uses a custom column-oriented bitmap index ca-
pable of fitting into GPU memory, and empulse advertises
that it can handle climate research queries over 3 billion rows
in as little as 100ms. It uses the GPU only for index and fil-
ter operations, however, leaving the door open for future re-
search and development with other operations. ParStream’s
development supports our thesis that GPU-based databases
will soon become impossible to ignore, given their excep-
tional speed and low cost.

3. TABLETS
We have carefully designed a data structure, the Tablet,

to flexibly handle information on the GPU. This name was
chosen because of the similarity to the vertically-partitioned
tablets used in Google’s BigTable [5]. The data structure
used during query execution has significant bearing on over-
all execution speed and the relative speeds of CPU versus
GPU execution. Thus, we give our data structure thor-
ough treatment. We intend our data structure to be read-
optimized and efficient for both CPU and GPU execution.

The tablet’s most basic feature is vertical partitioning
of table data; Records are split into fixed-size groups of
rows. Accessing an entire table of data may involve mul-
tiple tablets, but accessing a single row of data involves
only a single tablet. Vertical partitioning is useful in the
context of heavily distributed database by enabling efficient
management of data between networked machines. In our
implementation, however, tablets are useful because they
vastly simplify the process of moving data to and from GPU
memory. Tablets allow the GPU to operate exclusively on
known-size chunks of records which can be transferred seri-
ally in succession to the GPU or streamed to overlap with
kernel execution.

GPUs are not able to process tree data structures effi-
ciently because of their necessary lack of parallelism at the
levels near the tree’s root. A data structure in which each
core locates its data without communication or traversal of
a tree proves much more applicable to GPU execution. Ad-
ditionally, memory access coalescing is necessary for efficient
GPU execution since coalesced accesses can be as much as
an order of magnitude faster than uncoalesced accesses [28].
Coalescing requires that memory accesses from a thread-
block be adjacent or at a small fixed interval, a requirement
that necessitates fixed-size data records. Some research has
focused on applying CSS trees to GPU data processing, since
it maintains its leaves at fixed-size intervals, but we have not
examined their use in our implementation [11, 19, 29].

While GPUs use coalescing to reduce memory accesses,
CPUs take advantage of their cache heirarchies. A fair com-
parison of the two architectures utilizes both, and we design
our data structure specifically for this purpose. Our data
structure has been influenced by cache-conscious database
design, notably MonetDB, which stores records in column-
major form [4]. This means that data items within differ-
ent records but the same column are stored adjacent to one
another. Thus, data columns within the same record are
separated. This organization’s efficiency lies in the fact that
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Figure 1: The tablet is divided into a section of meta
data, a section of primary keys and pointers, a sec-
tion of fixed width data for fast and efficient reading,
and an area of variable width data accessed through
a relative pointer.

some of the most of the memory access intensive operations
of a database examine elements of a column in succession.
If an entire block of column data is loaded into a cache line
then a column in multiple records can be accessed without
a cache miss. Consequently, we use a column-major orga-
nization for our data. Note that the column major format
simultaneously targets both GPU coalescing and CPU cache
consistency.

An orthogonal problem addressed by the tablet is the is-
sue of handling queries executed on variable-sized data, such
as strings or the value of a key-value pair. Though the GPU
is less efficient relative to the CPU on this type of work-
load, ideally the programmer would make his own choice
about where to handle any query. There are two reasons
that variable-sized data processing is difficult and expensive
on the GPU. First, accesses to this data can not be coa-
lesced, since this requires fixed-size intervals between access
locations. Second, variable-sized data objects such as strings
are often stored separately from relevant fixed-size data and
accessed through a pointer. This makes it difficult to process
the data on the GPU, since this pointer is not valid within
the GPU’s memory space. Thus, these kinds of pointers to
variable-size data must be explicitly managed when tranfer-
ring information to the GPU to ensure that pointers resolve
to the correct data, a tedious process.

Tablets address this problem by allocating a portion of
the total tablet space for variable-size data and requiring
all pointers to this data to be relative to the start of the
tablet, rather than relative to the start of the memory space.
In other words, variable-sized data is accessed through a
pointer stored on the tablet that points to another location

on the same tablet, making it completely self-contained and
memory-space agnostic. When a tablet is transferred be-
tween main and GPU memory, both fixed and variable-size
data is moved simultaneously. When variable-size data is
accessed during a query, it is a two step process. First, the
pointers to the data are retrieved in a coalesced access from
the fixed-size area. These pointers locate the variable-sized
data relative to the start of the tablet, which are then ac-
cessed in the second step. Thus, variable-size data process-
ing is possible even when moving tablets between memory-
spaces and when only a portion of the database’s records
can be stored in GPU memory at a moment in time.

Figure 1 is a visual overview of our implementation of the
tablet concepts described above. Each tablet has a fixed
size chosen at compile time (intended to be in the range of
around 4 to 128MB) and four strictly defined areas described
below.

Meta Data The meta block is a fixed size area that con-
tains identifying information about the table member-
ship of the tablet, the sizes of the other three areas,
and the types, sizes, and names of the primary key
and columns contained in the tablet. Our tablets sup-
port only vertical partitioning, and thus the number
of columns is capped and the column meta-data has a
fixed size.

Primary Key The primary key area holds the primary key
of the table, along with a pointer that can be used to
refer directly to variable-size information, making it
possible to employ this data structure as a key-value
store.

Fixed-Size Data The fixed-size data area holds the tablet’s
information that has a known size, such numerical
data, in column-major form. Thus information from
a single column is adjacent and accesses can be coa-
lesced.

Variable Data The variable-size data block holds informa-
tion such as strings with unknown sizes. While fixed-
size data records are accessed based on the key loca-
tion, the variable-size area is accessed through a rel-
ative pointer, either from the key pointer or from a
pointer stored as a fixed-size data column. Figure 1
shows such a column in purple.

Note that the key area of the tablet is sized corresponding
to the number of records allowed in the tablet, but the re-
maining area can be allocated to fixed or variable-size data
based on the character of the tablet’s information.

4. TABLET MANAGEMENT
The overarching problem with processing large amounts

of data on the GPU is that it has limited memory space,
thus managing this space is essential. Though we designed
our tablet structure specifically to handle transmission be-
tween the CPU and GPU, there are a number of ways to
actually implement this transmission. Data transfer is such
a large component of total GPU processing time that any
overlap between transfer time and kernel execution time can
significantly accelerate a query. We must also manage the
transfer of query result data off of the GPU, leading to a
difficult problem of bi-directional data flow.
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Figure 2: Mapped memory removes GPU global memory as an intermediate step in the data transfer, but
buffers there to guarantee coalesced writes of results. Data and results transfer occur while data is being
processed rather than in separate steps.

The efficient movement of information between main mem-
ory and GPU memory is a somewhat arbitrary restriction of
current hardware. There is little reason not to expect that
future hardware will include machines with Tesla-like GPUs
that share global/main memory with the CPU or even exist
on the same die as the CPU. This scenario already exists
on current NVIDIA ION motherboards, which have CUDA
capable GPU processors embedded directly on the board,
using system’s main memory as their CUDA global mem-
ory. These GPUs, however, are not nearly as powerful as
general purpose GPUs such as the Tesla C2070. Our re-
sults indicate a machine in which a powerful GPGPU could
access main memory with a latency similar to GPU global
memory can only improve the execution time advantage of
GPU query processing. Large data management would be
simpler under such a scheme, and this development could
push GPGPU technology closer to the mainstream.

Serial transfer of data and results is the simplest memory
management scheme. There are three distinct steps in this
configuration: moving data to the GPU, executing the query
over this segment of data, and transferring the results of the
query back to main memory. If performed serially, most of
the total execution time is spent waiting on data transfers.
We use this as our baseline for GPU execution time.

The next management option is asynchronous streaming
of data to and from the GPU. The CUDA API provides the
capability of defining several streams of execution that run
asynchronously. Each step in a stream is dependent on the
one before it, but streams are independent of one another. In
particular, streaming was designed to allow memory trans-
fers to occur while a kernel executes. If we assume that
either the query data or the results fit entirely into GPU
memory then there is a significant advantage to using the
streaming API. Assuming kernel execution is the quickest
step (which it is with our test queries), it fits within the time
needed for memory transfers as the streaming API overlaps
them. Thus, the query execution time becomes roughly the

time it takes to transfer data on to, or results off of, the
GPU. Unfortunately, our assumption that neither the data
nor the results fit entirely in GPU memory means that both
data and results transfers must be included in the streaming.

This sort of simultaneous bi-directional data transfer com-
plicates things, since our tests indicate that current CUDA
technology is either unable to exploit the full bidirectional
nature of the PCI bus or unable to schedule pending data
transfers and kernel executions effectively enough to signif-
icantly outperform simple serial execution. Based on our
tests it appears the streaming API schedules asynchronous
tasks based on when they were added to the streams, rather
than checking at runtime which streams are ready to run
considering current memory transfers. With these restric-
tions, little kernel execution overlap occurs. Even with an
optimal streaming configuration that overlaps data trans-
fer with kernel execution as much as possible, this method
would outperform serial execution only as much as elimi-
nating the data transfer time of either the data or results
transfer, whichever is shorter. Thus, our next option for
data management outperforms even the best streaming.

The final, and ultimately best, option for handling tablets
during execution is mapped memory. The CUDA API pro-
vides a method for allowing the GPU to map a portion of
main memory onto the device, provided the memory has
been declared as pinned. Pinned, or page-locked memory,
is an allocation that the operating system can not swap out
of memory to disk, hence it is guaranteed to be at a certain
location. Mapped memory means that a kernel can directly
access pinned information in main memory with no tran-
fers. Mapped memory accesses must travel across the PCI
bus, and thus are significantly slower than accesses to GPU
global memory, particularly if uncoalesced. Our tests, how-
ever, have found that executing a kernel that uses mapped
memory is faster than the aggregate execution time of a
program with memory transfers before and after the ker-
nel execution. This works because the GPU is extremely



efficient at swapping out information-starved threadblocks
for threadblocks ready for execution. The mapped memory
method can be used for both data and results transfers, and
our tests have shown that it performs 2 to 3 times faster
than serial and streaming data transfers.

The results transfers are more complex than the data
transfers, however. Since we have carefully aligned the data
columns to 64-byte locations and the threads per block is
a power of two, all of these accesses our easily coalesced.
The results however, are neither in order within the thread-
block nor 64-byte aligned, and consequently not naturally
coalesced when writing to mapped memory. According to
the CUDA documentation and our own tests, unaligned but
adjacent out-of-order memory writes to GPU global mem-
ory are coalesced. However, based on our testing it appears
that mapped memory has more conservative requirements
for coalescing. Writes to mapped memory that are unaligned
or out-of-order take at least an order of magnitude longer.
Thus, we use a lazy, two-step procedure to write results back
to mapped memory.

Our two-step results write procedure is designed to guar-
antee that all writes to mapped memory are coalesced. We
assume that when we execute the opcode that handles writ-
ing results that certain threads within the threadblock are
’valid,’ in that parts of the data row with which the thread is
associated will be written to the results block; Only the valid
rows will need to perform writes. We perform an atomic
scatter operation within the threadblock by using CUDA’s
atomicAdd() operation on a variable in shared memory, thus
establishing both an area for each thread to write and the
total number of valid rows within the threadblock. This is
more efficient than a shared-memory scan operation because
it is not necessary to guarantee that each thread writes its
results in order, and we access shared memory only as many
times as we have valid rows. We then atomically increment
a global variable of the total number of result rows output to
this point, thus allocating ourselves a block of GPU global
memory for the current threadblock.

Once allocated, we take advantage of the relaxed coalesc-
ing requirements of the GPU-resident memory to perform an
initial write. It proceeds with each thread writing to its area
assigned in the scatter operation. We call the __thread-

fence() function to ensure data has reached global memory
and atomically increment a counter making note of this. Es-
sentially, this process writes a variable number of rows onto
a grid of threadblock-sized data areas. After incrementing
the counter, we check if a threadblock-sized area has been
filled with result rows. If so, each thread copies data from
this area to mapped memory, which transfers data back to
main memory. Since this is both in-order and aligned to
a multiple of the threadblock size, we guarantee that these
writes are coalesced. Thus, as we write results we perform
lazy copies to mapped memory only as they are needed, effi-
ciently overlapping these writes with the execution of other
threadblocks.

In addition to significantly improved query performance,
we emphasize that effective tablet management of queries
eliminates the size restriction of GPU global memory. Whether
transferred serially, streamed, or mapped into GPU mem-
ory, breaking table data into chunks and managing multiple
transfers during query execution means that GPU global
memory is re-used during the query process; We do not as-
sume that data is already on the device. Most importantly

we emphasize the following point: the results for the relative
speed of GPU query execution are identical for arbitrarily
large table datas and query results. This means that this
class of SQL SELECT queries is no longer dependent on GPU
memory size. In fact, in the mapped memory case, we only
need to explicitly allocate slightly more than a tablet size
of global memory to handle query execution, independent of
the size of the table being processed.

5. IMPLEMENTATION
Our model of query execution separates the query plan

from the management of data and target execution archi-
tecture (either the CPU or GPU). The query plan is stored
as a sequence of opcodes, which we call an opcode program or
statement. Execution of the opcodes and state management
is performed by the virtual machine. Each opcode represents
a distinct operation that can range from extremely simple
and granular to complex and reminiscent of the primitives
discussed previously. Opcodes can have up to 3 integer ar-
guments and 1 argument of any type. The virtual machine
interperates these arguments to change the effect of the op-
code and the locations from which data affected by the op-
code is retrieved and to which it is stored. The structure of
the opcodes is similar to assembly code, and concepts such
as registers and jumping to instructions are carried over and
added to the advanced data parallelism of our model. Op-
codes serve as the building blocks of each query.

Since opcodes serve as a lower-level representation of a
query, the high-level representation, SQL, must be compiled
into this new format. Our compiler parses SQL, identifies
columns drawn from data table records and derived expres-
sions, handles conditions placed on this query by a WHERE

clause, and finally, uses a code generator to output a pro-
gram of opcodes. The output somewhat resembles assembly,
with the exceptions that programs are executed over data
managed by the virtual machine, and individual opcodes are
implicitly parallel over each row of the table. Values drawn
from columns are treated as expressions that can be manip-
ulated with math opcodes such as Add and combined with
constant values or other columns. Conditions are formed
by comparing the values of two expressions with an opcode
such as Lt (less than) or Ge (greater than or equal to). If
this result evaluates to true, then we jump to another op-
code later in the program, otherwise falling through to the
next opcode. In this way the structure of ANDs and ORs of a
SQL statement’s WHERE clause can be represented opcodes.
Our SQL compiler must also manage the allocation of vir-
tual machine registers and their data types, ensuring that
opcodes operate on the proper pieces of data.

The opcodes are transparent to both data type and desti-
nation architecture. This means that our opcodes have been
explicitly designed to execute on either the CPU or the GPU
with no change at the opcode level. In fact, each opcode has
been implemented twice, once in a C function and once in
a CUDA kernel. Each virtual machine is essentially a gi-
ant switch statement. It maintains a program counter and
executes a certain block of code based on the opcode value.

An example opcode from our implementation is Column,
which loads data from a column for a given row and stores it
in a virtual machine register, a location in memory used by
opcodes for intermediate results. This loaded value can then
be compared to another register’s value with the Lt opcode,
which jumps to a certain opcode elsewhere in the program



if one register’s value is less than the other’s, creating data-
based divergence. This destination opcode could be Result,
which writes data to a result tablet for output as the query’s
result. Note that data type is transparent to these opcodes.
Parallelism for executing instructions over an entire table
is started with the Parallel opcode, which the virtual ma-
chine handles by jumping to a lower level virtual machine (a
C function for CPU execution or a CUDA kernel for GPU
execution) that executes subsequent opcodes in parallel.

In addition to being GPU-friendly, our model of paral-
lel opcode execution combined with column-major tables
means that our CPU virtual machine is enormously cache
efficient. Though we do not explicitly use the processor’s
vector operations, which have been proven to significantly
accelerate certain queries[35], we consider this type of exe-
cution to be SIMD, since each opcode executes over a block
of rows. The column-major data format means that data
in this SIMD block can be moved simultaneously with mem-

cpy() since it is adjacent, can fit into a single cache line
accessed in a tight inner loop.

A major advantage of CPU query execution over GPU
execution is the capability of the CPU to perform indirect
jumps, i.e., to jump to an instruction who’s location is stored
in a variable, rather than in the program itself. In the model
that we have adopted, each opcode must be switched to in
order to execute. On the CPU, this is accomplished with an
explicitly defined jump table. The jump table is an array
that maps the parsed opcode value to the opcode’s location
within the program, so each opcode is accessed in constant
time1. Though the newest version of the PTX assembly lan-
guage describes instructions for indirect jumps, our exper-
imentation indicates these have not yet been implemented,
and are thus not yet functional. Instead, the virtual machine
must use a switch and compare an opcode with each possible
value. This means that as many as n comparisons could be
required, where n is the total number of opcodes. This limi-
tation of current hardware means that the GPU has needless
overhead in this type of abstract query processing, since we
see no fundamental architectural reason for no indirect jump
instruction. We expect that future implementation of this
feature would increase GPU acceleration.

Current GPU hardware seems to be targeted more to-
wards specific data applications rather than the type of
abstract data processing presented here. One area this is
demonstrated is with the behavior of __syncthreads(). This
function causes a thread to block and wait for other threads
in the same threadblock to catch up and synchronize. How-
ever, others have noted that __syncthreads() has signifi-
cant undocumented behaviors [33]. It appears that __sync-
threads() on current hardware waits only for threads that
have followed an identical code branch. In other words, if
there is data-driven thread divergence, and one group of
threads executes the function, the kernel does not block as
expected, but rather only the branched threads block. This
becomes an issue with our opcode model because certain
threads diverge and jump over opcodes. Thus we are forced
to have every thread move in lockstep over each opcode in
the opcode program, even if some do not execute every op-
code’s logic. This has a small effect on GPU performance
and makes the kernel needlessly complex.

1We define this process explicitly, though many compilers
now make this optimization automatically.
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Figure 3: Separately executed primitives can be
grouped together in the same kernel invocation un-
der our opcode model of query execution.

6. OPCODES VS. PRIMITIVES
The difference between our opcode model and the prim-

itives model of many research projects is the location of
the kernel boundaries. Our query plans execute multiple
opcodes within the same kernel, whereas most GPU paral-
lel primitives are implemented as a black-box CUDA ker-
nel. Executing a query plan with these primitives involves
a kernel invocation for each primitive. For the purposes of
discussion we will assume this is true when discussing the
”primitive model.”

We believe the opcode model of execution is fundamen-
tally superior because of the very nature of stream program-
ming. In this context, stream programming refers to the
succession of data moved through the processing elements
of the GPU. Because it is a stream, there is necessarily no
retention of register or shared memory between kernel calls.
The ending of one kernel and the calling of the next rep-
resents a global synchronization of the GPU, and in fact is
the only way to ensure complete synchronization between
threadblocks in the CUDA programming paradigm. Thus
data must be written to the GPU’s global memory in order
to be retained between kernel calls. In many cases however,
it is unnecessary to synchronize globally and write data that
will just be read again in the next kernel call. In effect, the
entire stream is being unnecessarily cleared between primi-
tives.

The primitives model is unnecessarily restrictive, and the
cost of this restriction is additional memory accesses which
result in poorer performance. Our alternative opcode model
is this: primitives need not be split into separate kernels.
We place all of our GPU code in a single kernel and access
it through opcodes. Thus, we retain intermediate state be-
tween execution of primitives and perform global synchro-
nizations only when absolutely necessary. Ultimately this
leads to more efficient code while retaining the abstract na-
ture of classic primitives.

An excellent example of this limitation of primitives is
given in Revisiting Sorting for GPGPU Stream Architec-
tures, which describes the current state-of-the-art optimal
GPU sorting procedure [26]. The sorting operation consists
of a binning operation, several intemediate scans, and a scat-
ter operation. The report notes that certain operations, such
as the final scan operation and subsequent scatter can be ex-
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Figure 4: Queries demonstrated consistent speedup on the GPU, especially when assuming data and results
reside on the GPU.

ecuted in the same kernel, using what the authors refer to
as the ”visitor pattern,” conceptually identical to our opcode
system. The advantage here is that ”the overall number of
memory transactions needed by the application is dramat-
ically reduced because we obviate the need to move inter-
mediate state (e.g., the input/output sequences for scan)
through global device memory.”

In addition to efficient memory handling between classic
primitives, our opcode pattern also allows a wide range in
operation granularity. Not only can complex primitives such
as scan be fit into this model, but the extremely fine-grained
operations such as Column, and Add that we describe earlier
fit comfortably into this system. Provided there is a virtual
machine to manage the intermediate data associated with
these operations, it is trivial to call assembly-like operations
adjacent to primitives with arbitrary complexity, performing
global synchronization only when it is required. We expect
that future improvements to GPU query processing opera-
tions will be forced to use this opcode pattern to best the
current state-of-the-art applications.

7. TESTING
Testing was performed using a 8 million row randomly

generated numerical dataset. The columns consisted of an
integer primary key and 2 columns each with a random dis-
tribution in [-100,100], a normal distribution with a sigma
of 5, and another with a sigma of 20. Each of these distri-
butions was generated once each for a 32-bit integer column
and a IEEE 754 32-bit floating point column. The GNU Sci-
entific Library was used to ensure the quality of the random
distribution. The results shown are for an NVIDIA GTX
570 GPU, which has the latest generation Fermi architec-
ture, and a 3.2 GHz Intel Core i7 CPU with 4 hyperthreaded
cores, supporting 8 possible hardware threads.

We divide our execution configurations into the following
categories.

Single Core Execution using a single CPU core.

Multi-Core Execution using multiple CPU cores, up to the
8 hardware threads possible on our test machine.

Serial Execution on the GPU where data a tablet is trans-
ferred to the device, the query is executed, and the
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Figure 5: Streaming kernel execution far outpaces
serial execution, though faster faster speeds can be
achieved if data and results are cached on the GPU
and no transfers are required.

results are transferred off the device. This process oc-
curs serially for multiple tablets.

Mapped Execution on the GPU where main memory is
mapped onto the device for faster data access and re-
sults writes.

Cached Execution that assumes data and results can re-
main resident on the GPU. This is identical to serial
execution with the data and results tranfer times re-
moved. Since GPU memory is limited, these results
are not possible for arbitrary data sizes.

Figure 5 demonstrates the advantage of using mapped
data access. During each of our ten test queries multiple
tablets must be pushed through the GPU for processing.



Single Multi Mapped Cached
Integer 0.510 0.110 0.028 0.014
Floating Pt. 0.499 0.116 0.029 0.015
All 0.505 0.113 0.029 0.014

Table 1: Running times in seconds for CPU single
and multi-core and GPU mapped and cached execu-
tions shown for floating point and integer arithmetic
queries.

Over Single-core Over Multi-core
Mapped Cached Mapped Cached

Integer 18.125 37.512 3.919 8.111
Floating Pt. 16.995 34.383 3.955 8.002
All 17.547 35.895 3.937 8.054

Table 2: Speedup of mapped and cached GPU im-
plementations over single and multi-core GPU im-
plementations.

The serial execution bar shows the total time spent tranfer-
ring data and results to and from the device averaged across
these 10 queries, demonstrating that memory transfers con-
sume the majority of execution time. Using mapped mem-
ory obviates the need for these transfers as separate steps,
instead including them in the kernel execution time. This
roughly doubles the kernel run time, but the total mean
query time is reduced significantly. The cached execution
assumes that both data and results are small enough to be
resident on the GPU, and thus the expensive transfer time
is avoided.

Figure 4 visually presents the query running times ob-
served. While single-core CPU execution took an average
of .51s, multi-core execution was predictably much faster,
with an mean running time of .11s. Both the mapped and
cached GPU implementations saw running times faster still,
with .03s and .01s means, respectively. The odd numbered
queries used mostly integer arithmetic, while the subsequent
even numbered queries had identical query plans and ex-
pected results sizes, but used mostly 32-bit floating point
arithmetic. Thus, comparing these pairs provides interest-
ing insight into the relative performance of these operations
on both the CPU and the GPU.

Table 1 shows the mean running time in seconds for these
categories, while Table 2 shows the mean speedup of the
GPU tests against the CPU. Both GPU tests shown per-
formed faster than the highly optimized multi-core imple-
mentation, demonstrating the capability to accelerate these
database operations with GPGPU hardware. Note also that
for the mapped GPU implementation, this speedup applies
to arbitrarily large data sets, while the cached implementa-
tion assumes that data and results fit into device memory.

Figure 6 shows the growth of running time as a function
of the data size, averaged over the 10 queries in our suite.
Multi-core execution experiences irregular growth because of
different levels of CPU data saturation. We assign a tablet
to a thread and limit the number of threads to our CPU’s
possible hardware threads, which in this case is 8. When
8 tablets are processed, each is assigned a thread and fin-
ishes processing in a similar timeframe. When a 9th tablet
is added, however, we wait until a thread finishes processing
its first tablet before assigning it a second, significantly in-
creasing execution time. Thus, the step pattern observed is

a function of the maximim tablet size; With smaller tablets
the steps would be more frequent but more overhead would
be incurred.

8. FUTURE WORK
Our implementation has been designed partly to demon-

strate a very general framework for GPU data processing.
Using this framework, a next step is to implement and test
additional database features, such as joins and indices, proven
in other literature to be applicable to the GPU. Modern
RDBMSs are extremely complex, and much more work in
this area is required to fully replicate this functionality in
a GPU-friendly manner. We believe our opcode framework
will be adaptable to this additional functionality, with mod-
ifications to our virtual machine as appropriate to facilitate
inter-opcode communication.

Though we took great care ensuring our data structures
could expand to handle variable-size data such as strings,
processing these efficiently on the GPU is an entire research
area in itself that deserves more thorough work to imple-
ment and investigate performance. Our tablet data struc-
ture has also been designed to be abstract enough to func-
tion as a simple key/value store by simply associating a rel-
ative pointer with each fixed-size key. Under this model
the structured column area of the tablet has a size of zero.
Though processing these kinds of abstractly large data ob-
jects is more challenging because of the GPU’s architecture,
past research has convincingly demonstrated acceleration for
certain text processing applications [34].

Another interesting expansion would be to examine multi-
GPU and GPU/CPU concurrency. The NVIDIA Tesla S2050
Server, the current state-of-the-art NVIDIA server solution,
fits four dedicated Fermi-based GPUs into a standard 1U
server. Dividing a single query among several GPUs would
not only increase the processing power relative to the amount
of data processed, but would also increase the total amount
of data that could be cached in GPU global memory, up
to a possible 24 GB over 4 GPUs. Additionally, GPUs
could also handle disparate queries concurrently. Though we
have not had time to experiment with such configurations,
our tablet data structure naturally invites partitioning over
multiple memory spaces and execution environments. Ad-
ditionally, processing data on the CPU concurrently with
the GPU would also increase total productivity. The Fermi
generation of NVIDIA architecture makes handling multiple
CUDA contexts much easier, and we expect future innova-
tions in this area. We firmly believe that such implemen-
tations are the natural software realization of the massive
processing power now available on the GPU.

A recurring feature the programmer discovers when ex-
perimenting with the unique and raw computing ability of
the GPU is that even minor tweaks and additions can sig-
nificantly change program performance. For example, we
arrived at our 128 threads per CUDA block configuration
through experimentation over our battery of test queries.
This configuration is influenced by the specific structure of
the Tesla C1060, the memory access intensity of our query
kernel, the amount of shared memory necessary for certain
operations, and many other seen and unseen factors. It
is very possible that on future hardware, or even on spe-
cific queries, this value and other configuration values like
it will be sub-optimal. Future research could include both
re-optimizing for other hardware, or developing models that
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Figure 6: Multi-core execution increases more irregularly than mapped or cached execution on the GPU,
which exeriences almost linear growth in execution time.

attempt to predict the optimal configuration values based on
hardware architecture and expected query characteristics.

A major effort of this work has been to prove that GPU
data processing is limited more by hard disk speed and main
memory size than by the bandwidth between main and GPU
memory, as is the case with virtually all databases. For our
test we assumed that the data fit completely into main mem-
ory and attempted to optimize transfer to and from GPU
memory. Future research could attempt to improve the to-
tal latency of transfers from disk to GPU memory. Another
possibility is that future GPU hardware is able to access the
disk more directly, which would open up a host of other pos-
sibilities for acceleration. Regardless of the direction, it is
clear that this general area of GPU application development
is ripe for further research.

9. CONCLUSION
The simple fact is that database software development has

yet to catch up with the new capabilities of GPGPU hard-
ware; This research attempts to advance understanding of
how GPUs can accelerate certain RDBMS operations. The
tablet data structure has been combined with the two-step
mapped memory reading and writing technique to demon-
strate that memory transfers with GPU memory are not a
major obstacle to GPU data handling. Thorough examina-
tion of our opcode model of execution shows that it allows
the programmer to choose any granularity for database op-
erations in conjunction with our relatively simple virtual
machine, while also enabling more efficient data handling
than is possible with the parallel primitives used in many
other research projects.

A speedup of 4x over multi-core CPU query execution was
observed for arbitrarily large data sizes, with a speedup of
8x when assuming that data and results can be cached in
GPU global memory. Given the rapid development of cheap
and powerful GPUs, we expect this relative advantage of
the GPU to increase. We also expect a significant amount
of research and development in applying GPUs to databases
in both the academic and commercial arenas. Though the
GPU is a new and complex device, its incredible power and
the major challenges faced in processing huge amounts of
data means that it will inevitably become a much more im-

portant piece of general data processing in the near future.
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